ELF for the ARM 64-bit architecture (AArch64)

ELF for the ARM® 64-bit
Architecture (AArch64)

Document number: ARM [HI 0056B, current through AArch64 ABI release 1.0
Date of Issue: 22" May 2013
Abstract

This document describes the use of the ELF binary file format in the Application Binary Interface (ABI) for the
ARM 64-bit architecture.

Keywords
ELF, AArch64 ELF, ...

How to find the latest release of this specification or report a defect in it

Please check the ARM Information Center (http://infocenter.arm.com/) for a later release if your copy is more than 3 months
old (navigate to the Software Development Tools section, Application Binary Interface for the ARM Architecture subsection).

Please report defects in this specification to arm dot eabi at arm dot com.

Licence

THE TERMS OF YOUR ROYALTY FREE LIMITED LICENCE TO USE THIS ABI SPECIFICATION ARE GIVEN IN SECTION
1.4, Your licence to use this specification (ARM contract reference LEC-ELA-00081 V2.0). PLEASE READ THEM
CAREFULLY.

BY DOWNLOADING OR OTHERWISE USING THIS SPECIFICATION, YOU AGREE TO BE BOUND BY ALL OF ITS
TERMS. IF YOU DO NOT AGREE TO THIS, DO NOT DOWNLOAD OR USE THIS SPECIFICATION.

THIS ABI SPECIFICATION IS PROVIDED “AS IS” WITH NO WARRANTIES (SEE SECTION 1.4 FOR DETAILS).

Proprietary notice

ARM, Thumb, RealView, ARM7TDMI and ARM9TDMI are registered trademarks of ARM Limited. The ARM logo
is a trademark of ARM Limited. ARM9, ARM926EJ-S, ARM946E-S, ARM1136J-S ARM1156T2F-S ARM1176JZ-S
Cortex, and Neon are trademarks of ARM Limited. All other products or services mentioned herein may be
trademarks of their respective owners.

ARM IHI 0056B Copyright © 2010-2013 ARM Limited. All rights reserved. Page 1 of 27

http://infocenter.arm.com/�

ELF for the ARM 64-bit architecture (AArch64)

Contents

1 ABOUT THIS DOCUMENT 4
1.1 Change control 4
1.1.1 Current status and anticipated changes 4
1.1.2 Change history 4
1.2 References 4
1.3 Terms and abbreviations 5
1.4 Your licence to use this specification 5
15 Acknowledgements 6
2 ABOUT THIS SPECIFICATION 7
3 PLATFORM STANDARDS (EXAMPLE ONLY) 8
3.1 Linux Platform ABI (example only) 8
3.1.1 Symbol Versioning 8
3.1.2 Program Linkage Table (PLT) Sequences and Usage Models 8
3.1.2.1 Symbols for which a PLT entry must be generated 8
3.1.2.2 Overview of PLT entry code generation 8

4 OBJECT FILES 9
4.1 Introduction 9
4.1.1 Registered Vendor Names 9
4.2 ELF Header 9
4.2.1 ELF Identification 10
4.3 Sections 10
4.3.1 Special Section Indexes 10
4.3.2 Section Types 10
4.3.3 Section Attribute Flags 10
4.3.3.1 Merging of objects in sections with SHF_MERGE 10
4.3.4 Special Sections 11
4.3.5 Section Alignment 11
4.3.6 Build Attributes 11
4.4 String Table 11
4.5 Symbol Table 11
45.1 Weak Symbols 11
4511 Weak References 11
4512 Weak Definitions 11
45.2 Symbol Types 12
45.3 Symbol names 12
45.3.1 Reserved symbol names 12
ARM IHI 0056B Copyright © 2010-2013 ARM Limited. All rights reserved. Page 2 of 27

ELF for the ARM 64-bit architecture (AArch64)

4.5.4 Mapping symbols 12
4.6 Relocation 13
46.1 Relocation codes 13
4.6.2 Addends and PC-bias 13
4.6.3 Relocation types 14
4.6.4 Static miscellaneous relocations 15
4.6.5 Static Data relocations 15
4.6.6 Static AArch64 relocations 15
4.6.7 Call and Jump relocations 19
4.6.8 Group relocations 19
4.6.9 Proxy-generating relocations 19
4.6.10 Relocations for thread-local storage 19
4.6.10.1 General Dynamic thread-local storage model 20
4.6.10.2 Local Dynamic thread-local storage model 21
4.6.10.3 Initial Exec thread-local storage model 22
4.6.10.4 Local Exec thread-local storage model 22
4.6.10.5 Thread-local storage descriptors 24
4.6.11 Dynamic relocations 24
4.6.12 Private and platform-specific relocations 26
4.6.13 Unallocated relocations 26
4.6.14 I|dempotency 26

5 PROGRAM LOADING AND DYNAMIC LINKING 27
5.1 Program Header 27
5.1.1 Platform architecture compatibility data 27
5.2 Program Loading 27
5.3 Dynamic Linking 27
5.3.1 Dynamic Section 27

ARM IHI 0056B Copyright © 2010-2013 ARM Limited. All rights reserved. Page 3 of 27

ELF for the ARM 64-bit architecture (AArch64)

1 ABOUT THIS DOCUMENT

1.1 Change control

1.1.1 Current status and anticipated changes
This document’s status is released. Clarifications, compatible extensions and minor changes should be expected.
Text highlighted in yellow denotes recent changes.

1.1.2 Change history
Issue Date By Change
00bet3 20" December 2011 LS Beta release

1.0 22" May 2013 RE First public release

1.2 References

This document refers to, or is referred to by, the following documents.

Ref External reference or URL Title
AAELF64 This document ELF for the ARM 64-bit Architecture (AArch64).
AAPCS64 IHI 0055 Procedure Call Standard for the ARM 64-bit Architecture
Addenda32 IHI 0045 Addenda to, and Errata in, the ABI for the ARM
Architecture

LSB http://www.linuxbase.org/ Linux Standards Base
SCO-ELF http://www.sco.com/developers/gabi/ System V Application Binary Interface — DRAFT
SYM-VER http://people.redhat.com/drepper/symbol- GNU Symbol Versioning

versioning
TLSDESC http://www.fsfla.org/~Ixoliva/writeups/ TLS Descriptors for ARM. Original proposal document

TLS/paper-k2006.pdf

ARM IHI 0056B Copyright © 2010-2013 ARM Limited. All rights reserved. Page 4 of 27

http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.ihi0056-/�
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.ihi0055-/�
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.ihi0045-/�
http://www.linuxbase.org/�
http://www.sco.com/developers/gabi/�
http://people.redhat.com/drepper/symbol-versioning�
http://people.redhat.com/drepper/symbol-versioning�
http://www.fsfla.org/~lxoliva/writeups/TLS/paper-lk2006.pdf�
http://www.fsfla.org/~lxoliva/writeups/TLS/paper-lk2006.pdf�

ELF for the ARM 64-bit architecture (AArch64)

1.3 Terms and abbreviations

The ABI for the ARM 64-bit Architecture uses the following terms and abbreviations.

Term Meaning
A32 The instruction set named ARM in the ARMv7 architecture; A32 uses 32-bit fixed-length
instructions.
Ab4 The instruction set available when in AArch64 state.
AAPCS64 Procedure Call Standard for the ARM 64-hit Architecture (AArch64)
AArch32 The 32-bit general-purpose register width state of the ARMv8 architecture, broadly
compatible with the ARMv7-A architecture.
AArch64 The 64-bit general-purpose register width state of the ARMv8 architecture.
ABI Application Binary Interface:
1. The specifications to which an executable must conform in order to execute in a specific
execution environment. For example, the Linux ABI for the ARM Architecture.
2. A particular aspect of the specifications to which independently produced relocatable
files must conform in order to be statically linkable and executable. For example, the
C++ ABI for the ARM Architecture, ELF for the ARM Architecture, ...
ARM-based ... based on the ARM architecture ...

Floating point

Q-o-l

SIMD

SIMD and
floating point

T32

Depending on context floating point means or qualifies: (a) floating-point arithmetic
conforming to IEEE 754 2008; (b) the ARMVS floating point instruction set; (c) the register
set shared by (b) and the ARMv8 SIMD instruction set.

Quiality of Implementation — a quality, behavior, functionality, or mechanism not required by
this standard, but which might be provided by systems conforming to it. Q-o-I is often used
to describe the tool-chain-specific means by which a standard requirement is met.

Single Instruction Multiple Data — A term denoting or qualifying: (a) processing several data
items in parallel under the control of one instruction; (b) the ARM v8 SIMD instruction set:
(c) the register set shared by (b) and the ARMv8 floating point instruction set.

The ARM architecture’s SIMD and Floating Point architecture comprising the floating point
instruction set, the SIMD instruction set and the register set shared by them.

The instruction set named Thumb in the ARMv7 architecture; T32 uses 16-bit and 32-bit
instructions.

Other terms may be defined when first used.

1.4 Your licence to use this specification

IMPORTANT: THIS IS A LEGAL AGREEMENT (“LICENCE”) BETWEEN YOU (AN INDIVIDUAL OR SINGLE ENTITY WHO IS
RECEIVING THIS DOCUMENT DIRECTLY FROM ARM LIMITED) (“LICENSEE") AND ARM LIMITED (“ARM") FOR THE
SPECIFICATION DEFINED IMMEDITATELY BELOW. BY DOWNLOADING OR OTHERWISE USING IT, YOU AGREE TO
BE BOUND BY ALL OF THE TERMS OF THIS LICENCE. IF YOU DO NOT AGREE TO THIS, DO NOT DOWNLOAD OR
USE THIS SPECIFICATION.

“Specification” means, and is limited to, the version of the specification for the Applications Binary Interface for the
ARM Architecture comprised in this document. Notwithstanding the foregoing, “Specification” shall not include (i)
the implementation of other published specifications referenced in this Specification; (ii) any enabling technologies

ARM IHI 0056B Copyright © 2010-2013 ARM Limited. All rights reserved. Page 5 of 27

ELF for the ARM 64-bit architecture (AArch64)

that may be necessary to make or use any product or portion thereof that complies with this Specification, but are
not themselves expressly set forth in this Specification (e.g. compiler front ends, code generators, back ends,
libraries or other compiler, assembler or linker technologies; validation or debug software or hardware;
applications, operating system or driver software; RISC architecture; processor microarchitecture); (iii) maskworks
and physical layouts of integrated circuit designs; or (iv) RTL or other high level representations of integrated
circuit designs.

Use, copying or disclosure by the US Government is subject to the restrictions set out in subparagraph (c)(1)(ii) of
the Rights in Technical Data and Computer Software clause at DFARS 252.227-7013 or subparagraphs (c)(1) and
(2) of the Commercial Computer Software — Restricted Rights at 48 C.F.R. 52.227-19, as applicable.

This Specification is owned by ARM or its licensors and is protected by copyright laws and international copyright
treaties as well as other intellectual property laws and treaties. The Specification is licensed not sold.

1. Subject to the provisions of Clauses 2 and 3, ARM hereby grants to LICENSEE, under any intellectual
property that is (i) owned or freely licensable by ARM without payment to unaffiliated third parties and (ii)
either embodied in the Specification or Necessary to copy or implement an applications binary interface
compliant with this Specification, a perpetual, non-exclusive, non-transferable, fully paid, worldwide limited
licence (without the right to sublicense) to use and copy this Specification solely for the purpose of
developing, having developed, manufacturing, having manufactured, offering to sell, selling, supplying or
otherwise distributing products which comply with the Specification.

2. THIS SPECIFICATION IS PROVIDED "AS IS" WITH NO WARRANTIES EXPRESS, IMPLIED OR STATUTORY,
INCLUDING BUT NOT LIMITED TO ANY WARRANTY OF SATISFACTORY QUALITY, MERCHANTABILITY,
NONINFRINGEMENT OR FITNESS FOR A PARTICULAR PURPOSE. THE SPECIFICATION MAY INCLUDE
ERRORS. ARM RESERVES THE RIGHT TO INCORPORATE MODIFICATIONS TO THE SPECIFICATION IN
LATER REVISIONS OF IT, AND TO MAKE IMPROVEMENTS OR CHANGES IN THE SPECIFICATION OR THE
PRODUCTS OR TECHNOLOGIES DESCRIBED THEREIN AT ANY TIME.

3. This Licence shall immediately terminate and shall be unavailable to LICENSEE if LICENSEE or any party
affiliated to LICENSEE asserts any patents against ARM, ARM affiliates, third parties who have a valid
licence from ARM for the Specification, or any customers or distributors of any of them based upon a
claim that a LICENSEE (or LICENSEE affiliate) patent is Necessary to implement the Specification. In this
Licence; (i) “affiliate” means any entity controlling, controlled by or under common control with a party (in
fact or in law, via voting securities, management control or otherwise) and “affiliated” shall be construed
accordingly; (ii) “assert” means to allege infringement in legal or administrative proceedings, or
proceedings before any other competent trade, arbitral or international authority; (iii) “Necessary” means
with respect to any claims of any patent, those claims which, without the appropriate permission of the
patent owner, will be infringed when implementing the Specification because no alternative, commercially
reasonable, non-infringing way of implementing the Specification is known; and (iv) English law and the
jurisdiction of the English courts shall apply to all aspects of this Licence, its interpretation and
enforcement. The total liability of ARM and any of its suppliers and licensors under or in relation to this
Licence shall be limited to the greater of the amount actually paid by LICENSEE for the Specification or
US$10.00. The limitations, exclusions and disclaimers in this Licence shall apply to the maximum extent
allowed by applicable law.

ARM Contract reference LEC-ELA-00081 V2.0 AB/LS (9 March 2005)

1.5 Acknowledgements

ARM IHI 0056B Copyright © 2010-2013 ARM Limited. All rights reserved. Page 6 of 27

ELF for the ARM 64-bit architecture (AArch64)

2 ABOUT THIS SPECIFICATION

This specification provides the processor-specific definitions required by ELF [SCO-ELF] for AArch64-based
systems.

The ELF specification is part of the larger Unix System V (SysV) ABI specification where it forms chapters 4 and
5. However, the ELF specification can be used in isolation as a generic object and executable format.

Section 3 of this document covers ELF related matters that are platform specific.

Sections 4 and 5 of this document are structured to correspond to chapters 4 and 5 of the ELF specification.
Specifically:

O Section 4 covers object files and relocations
O Section 5 covers program loading and dynamic linking.

ARM IHI 0056B Copyright © 2010-2013 ARM Limited. All rights reserved. Page 7 of 27

ELF for the ARM 64-bit architecture (AArch64)

3 PLATFORM STANDARDS (EXAMPLE ONLY)

We expect that each operating system that adopts components of this ABI specification will specify additional
requirements and constraints that must be met by application code in binary form and the code-generation tools
that generate such code.

As an example of the kind of issue that must be addressed 83.1, below, lists some of the issues addressed by the
Linux Standard Base [LSB] specifications.

3.1 Linux Platform ABI (example only)

3.1.1 Symbol Versioning
The Linux ABI uses the GNU-extended Solaris symbol versioning mechanism [SYM-VER)].

Concrete data structure descriptions can be found in /usr/include/sys/link.h (Solaris), /usr/include/elf.h (Linux), in
the Linux Standard Base specifications [LSB], and in Drepper’s paper [SYM-VER].

A binary file intended to be specific to Linux shall set the EI_OSABI field to the value required by Linux [LSB].

3.1.2 Program Linkage Table (PLT) Sequences and Usage Models

3.1.2.1 Symbols for which a PLT entry must be generated

A PLT entry implements a long-branch to a destination outside of this executable file. In general, the static linker
knows only the name of the destination. It does not know its address. Such a location is called an imported
location or imported symbol.

SysV-based Dynamic Shared Objects (DSOs) (e.g. for Linux) also require functions exported from an executable
file to have PLT entries. In effect, exported functions are treated as if they were imported, so that their definitions
can be overridden (pre-empted) at dynamic link time.

A linker must generate a PLT entry for each candidate symbol cited by a relocation directive that relocates an
AArch64 B/BL-class instruction (84.6.7). For a Linux/SysV DSO, each STB_GLOBAL symbol with STV_DEFAULT
visibility is a candidate.

3.1.2.2 Overview of PLT entry code generation

A PLT entry must be able to branch any distance. This is typically achieved by loading the destination address
from the corresponding Global Object Table (GOT) entry.

On-demand dynamic linking constrains the code sequences that can be generated for a PLT entry. Specifically,
there is a requirement from the dynamic linker for certain registers to contain certain values. Typically these are:

O The address or index of the of not-yet-linked PLT entry.
O The return address of the call to the PLT entry.
The register interface to the dynamic linker is specified by the host operating system.

ARM IHI 0056B Copyright © 2010-2013 ARM Limited. All rights reserved. Page 8 of 27

ELF for the ARM 64-bit architecture (AArch64)

4 OBJECT FILES

4.1 Introduction

4.1.1 Registered Vendor Names

Various symbols and names may require a vendor-specific name to avoid the potential for name-space conflicts.
The list of currently registered vendors and their preferred short-hand name is given in Table 4-1, Registered
Vendors. Tools developers not listed are requested to co-ordinate with ARM to avoid the potential for conflicts.

Table 4-1, Registered Vendors

Name Vendor

aeabi Reserved to the ABI for the ARM Architecture (EABI pseudo-vendor)

AnonXyz | Reserved to private experiments by the Xyz vendor.
anonXyz | Guaranteed not to clash with any registered vendor name.

ARM ARM Ltd (Note: the company, not the processor).
cxa C++ ABI pseudo-vendor

FSL Freescale Semiconductor Inc.

GHS Green Hills Systems

gnu GNU compilers and tools (Free Software Foundation)
iar IAR Systems

intel Intel Corporation

iXs Intel Xscale

11vm The LLVM/Clang projects

PSI PalmSource Inc.

RAL Rowley Associates Ltd

somn SOMNIUM Technologies Limited.

TASKING | Altium Ltd.

Tl Tl Inc.
tls Reserved for use in thread-local storage routines.
WRS Wind River Systems.

To register a vendor prefix with ARM, please E-mail your request to arm.eabi at arm.com.

4.2 ELF Header

The ELF header provides a number of fields that assist in interpretation of the file. Most of these are specified in
the base standard. The following fields have ARM-specific meanings.

e_machine
An object file conforming to this specification must have the value EM_AARCH64 (183, 0xB7).

ARM IHI 0056B Copyright © 2010-2013 ARM Limited. All rights reserved. Page 9 of 27

ELF for the ARM 64-bit architecture (AArch64)

e_entry

The base ELF specification requires this field to be zero if an application does not have an entry point.
Nonetheless, some applications may require an entry point of zero (for example, via a reset vector).

A platform standard may specify that an executable file always has an entry point, in which case e_entry specifies
that entry point, even if zero.

e_flags
There are no processor-specific flags so this field shall contain zero.

4.2.1 ELF Identification

The 16-byte ELF identification (e_ident) provides information on how to interpret the file itself. The following
values shall be used on ARM systems

EI_CLASS
An AArch64 ELF file shall contain ELFCLASS64 objects.
EI_DATA

This field may be either ELFDATA2LSB or ELFDATA2MSB. The choice will be governed by the default data order
in the execution environment.

El_OSABI

This field shall be zero unless the file uses objects that have flags which have OS-specific meanings (for example,
it makes use of a section index in the range SHN_LOOS through SHN_HI0S).

4.3 Sections

4.3.1 Special Section Indexes

No processor-specific special section indexes are defined. All processor-specific values are reserved to future
revisions of this specification.

4.3.2 Section Types

The defined processor-specific section types are listed in Table 4-2, Processor specific section types. All other
processor-specific values are reserved to future revisions of this specification.

Table 4-2, Processor specific section types

Name Value Comment

SHT_AARCH64_ATTRIBUTES | 0x70000003 | Reserved for Object file compatibility attributes

4.3.3 Section Attribute Flags

There are no processor-specific section attribute flags defined. All processor-specific values are reserved to future
revisions of this specification.

4.3.3.1 Merging of objects in sections with SHF_MERGE

In a section with the SHF_MERGE flag set, duplicate used objects may be merged and unused objects may be
removed. An object is used if:
O Arelocation directive addresses the object via the section symbol with a suitable addend to point to the object.

O Arelocation directive addresses a symbol within the section. The used object is the one addressed by the
symbol irrespective of the addend used.

ARM IHI 0056B Copyright © 2010-2013 ARM Limited. All rights reserved. Page 10 of 27

ELF for the ARM 64-bit architecture (AArch64)

4.3.4 Special Sections
Table 4-3, AArch64 special sections lists the special sections defined by this ABI.

Table 4-3, AArch64 special sections

Name Type Attributes

-ARM_attributes SHT_AARCH64_ATTRIBUTES | none

-ARM.attributes names a section that contains build attributes. See 84.3.6 Build Attributes.
Additional special sections may be required by some platforms standards.

4.3.5 Section Alignment

There is no minimum alignment required for a section. Sections containing code must be at least 4-byte aligned.
Platform standards may set a limit on the maximum alignment that they can guarantee (normally the minimum
page size supported by the platform).

4.3.6 Build Attributes
Build attributes are encoded in a section of type SHT_AARCH64_ATTRIBUTES, and name _ARM._attributes.

Build attributes are unnecessary when a platform ABI operating system is fully specified. At this time no public
build attributes have been defined for AArch64, however, software development tools are free to use attributes
privately. For an introduction to AArch32 build attributes see [Addenda32].

4.4 String Table

There are no processor-specific extensions to the string table.

4.5 Symbol Table

There are no processor-specific symbol types or symbol bindings. All processor-specific values are reserved to
future revisions of this specification.

4.5.1 Weak Symbols

There are two forms of weak symbol:
O A weak reference — This is denoted by st_shndx=SHN_UNDEF, ELF64_ST_BIND()=STB_WEAK.
O A weak definition — This is denoted by st_shndx!=SHN_UNDEF, ELF64 ST _BIND()=STB_WEAK.

45.1.1 Weak References

Libraries are not searched to resolve weak references. It is not an error for a weak reference to remain
unsatisfied.

During linking, the symbol value of an undefined weak reference is:

O Zero if the relocation type is absolute
O The address of the place if the relocation type is pc-relative.

See 8§4.6 Relocation for further details.

4.5.1.2 Weak Definitions

A weak definition does not change the rules by which object files are selected from libraries. However, if a link set
contains both a weak definition and a non-weak definition, the non-weak definition will always be used.

ARM IHI 0056B Copyright © 2010-2013 ARM Limited. All rights reserved. Page 11 of 27

ELF for the ARM 64-bit architecture (AArch64)

4.5.2 Symbol Types

All code symbols exported from an object file (symbols with binding STB_GLOBAL) shall have type STT_FUNC.
All extern data objects shall have type STT_OBJECT. No STB_GLOBAL data symbol shall have type STT_FUNC.
The type of an undefined symbol shall be STT_NOTYPE or the type of its expected definition.

The type of any other symbol defined in an executable section can be STT_NOTYPE. A linker is only required to
provide long-branch and PLT support for symbols of type STT_FUNC.

4.5.3 Symbol names

A symbol that names a C or assembly language entity should have the name of that entity. For example, a C
function called calculate generates a symbol called calculate (not _calculate).

Symbol names are case sensitive and are matched exactly by linkers.
Any symbol with binding STB_LOCAL may be removed from an object and replaced with an offset from another
symbol in the same section under the following conditions:

O The original symbol and replacement symbol are not of type STT_FUNC, or both symbols are of type
STT_FUNC.

O All relocations referring to the symbol can accommodate the adjustment in the addend field (it is permitted to
convert a REL type relocation to a RELA type relocation).

O The symbol is not described by the debug information.
O The symbol is not a mapping symbol (§84.5.4).

O The resulting object, or image, is not required to preserve accurate symbol information to permit de-
compilation or other post-linking optimization techniques.

O If the symbol labels an object in a section with the SHF_MERGE flag set, the relocation using symbol may be
changed to use the section symbol only if the initial addend of the relocation is zero.

No tool is required to perform the above transformations; an object consumer must be prepared to do this itself if it
might find the additional symbols confusing.

Note Multiple conventions exist for the names of compiler temporary symbols (for example, ARMCC uses
LxxX.yyy, while GNU tools use .LxxXx).

4.5.3.1 Reserved symbol names

The following symbols are reserved to this and future revisions of this specification:

O Local symbols (STB_LOCAL) beginning with ‘$’

O Symbols matching the pattern non-empty-prefix$$non-empty-suffix.

O Global symbols (STB_GLOBAL, STB_WEAK) beginning with *__aeabi_’ (double ‘_’ at start).

Note that global symbols beginning with *__vendor_’ (double ‘_’ at start), where vendor is listed in §4.1.1,

Registered Vendor Names, are reserved to the named vendor for the purpose of providing vendor-specific tool-
chain support functions.

4.5.4 Mapping symbols

A section of an ELF file can contain a mixture of A64 code and data. There are inline transitions between code
and data at literal pool boundaries.

Linkers, file decoders and other tools need to map binaries correctly. To support this, a number of symbols,
termed mapping symbols appear in the symbol table to label the start of each sequence of bytes of the
appropriate class. All mapping symbols have type STT_NOTYPE and binding STB_LOCAL. The st_size field is
unused and must be zero.

The mapping symbols are defined in Table 4-4, Mapping symbols. It is an error for a relocation to reference a
mapping symbol. Two forms of mapping symbol are supported:

ARM IHI 0056B Copyright © 2010-2013 ARM Limited. All rights reserved. Page 12 of 27

ELF for the ARM 64-bit architecture (AArch64)

O A short form that uses a dollar character and a single letter denoting the class. This form can be used when
an object producer creates mapping symbols automatically. Its use minimizes string table size.

O A longer form in which the short form is extended with a period and then any sequence of characters that are
legal for a symbol. This form can be used when assembiler files have to be annotated manually and the
assembler does not support multiple definitions of symbols.

Mapping symbols defined in a section (relocatable view) or segment (executable view) define a sequence of half-
open intervals that cover the address range of the section or segment. Each interval starts at the address defined
by the mapping symbol, and continues up to, but not including, the address defined by the next (in address order)
mapping symbol or the end of the section or segment. A section that contains instructions must have a mapping
symbol defined at the beginning of the section. If a section contains only data no mapping symbol is required. A
platform ABI should specify whether or not mapping symbols are present in the executable view; they will never
be present in a stripped executable file.

Table 4-4, Mapping symbols

Name Meaning
$x Start of a sequence of A64 instructions
$x.<any..>
$d Start of a sequence of data items (for example, a literal pool)
$d.<any..>

4.6 Relocation

Relocation information is used by linkers to bind symbols to addresses that could not be determined when the
binary file was generated. Relocations are classified as Static or Dynamic.

O A static relocation relocates a place in an ELF relocatable file (e_type = ET_REL); a static linker processes it.

O A dynamic relocation is designed to relocate a place in an ELF executable file or dynamic shared object
(e_type = ET_EXEC, ET_DYN) and to be handled by a dynamic linker, program loader, or other post-linking
tool (dynamic linker henceforth).

O A dynamic linker need only process dynamic relocations; a static linker must handle any defined relocation.
O Dynamic relocations are designed to be processed quickly.
- There are a small number of dynamic relocations whose codes are contiguous from 1024.
- Dynamic relocations relocate simple places and do not need complex field extraction or insertion.
O A static linker either:
- Fully resolves a relocation directive.
- Or, generates a dynamic relocation from it for processing by a dynamic linker.
O A well-formed executable file or dynamic shared object has no static relocations after static linking.

4.6.1 Relocation codes

The relocation codes for AArch64 are divided into four categories:

O Mandatory relocations that must be supported by all static linkers.
O Platform-specific relocations required by specific platform ABIs.

O Private relocations that are guaranteed never to be allocated in future revisions of this specification, but which
must never be used in portable object files.

O Unallocated relocations that are reserved for use in future revisions of this specification.

4.6.2 Addends and PC-bias

A binary file may use REL or RELA relocations or a mixture of the two (but multiple relocations of the same place
must use only one type).

ARM IHI 0056B Copyright © 2010-2013 ARM Limited. All rights reserved. Page 13 of 27

ELF for the ARM 64-bit architecture (AArch64)

The initial addend for a REL-type relocation is formed according to the following rules.

O If the relocation relocates data (84.6.5) the initial value in the place is sign-extended to 64 bits.

O If the relocation relocates an instruction the immediate field of the instruction is extracted, scaled as required
by the instruction field encoding, and sign-extended to 64 bits.

A RELA format relocation must be used if the initial addend cannot be encoded in the place.

There is no PC bias to accommodate in the relocation of a place containing an instruction that formulates a PC-
relative address. The program counter reflects the address of the currently executing instruction.

4.6.3 Relocation types

Tables in the following sections list the relocation codes for AArch64 and record the following.
O The relocation code which is stored in the ELF64_R_TYPE component of the r_info field.
O The preferred mnemonic name for the relocation. This has no significance in a binary file.

O The relocation operation required. This field describes how a symbol and addend are processed by a linker. It
does not describe how an initial addend value is extracted from a place (84.6.2) or how the resulting relocated
value is inserted or encoded into a place.

O A comment describing the kind of place that can be relocated, the part of the result value inserted into the
place, and whether or not field overflow should be checked.

Static relocation codes begin at 257; dynamic relocation codes at 1024. Both 0 and 256 should be accepted as
values of R_AARCH64_NONE, the null relocation. All unallocated type codes are reserved for future allocation.

The following nomenclature is used in the descriptions of relocation operations:
O S (when used on its own) is the address of the symbol.

O As the addend for the relocation.

O P isthe address of the place being relocated (derived from r_offset).

O Xis the result of a relocation operation, before any masking or bit-selection operation is applied

O Page(expr) is the page address of the expression expr, defined as (expr & ~OxFFF). (This applies even if
the machine page size supported by the platform has a different value.)

O GOT is the address of the Global Offset Table, the table of code and data addresses to be resolved at dynamic

link time. The GOT and each entry in it must be 64-bit aligned.

O GDAT(S+A) represents a 64-bit entry in the GOT for address S+A. The entry will be relocated at run time with
relocation R_AARCH64_GLOB_DAT(S+A).

O G(expr) is the address of the GOT entry for the expression expr.

O Delta(S) if Sis a normal symbol, resolves to the difference between the static link address of S and the
execution address of S. If S is the null symbol (ELF symbol index 0), resolves to the difference between the
static link address of P and the execution address of P.

O Indirect(expr) represents the result of calling expr as a function. The result is the return value from the
function that is returned in r0. The arguments passed to the function are defined by the platform ABI.

O [msb:1sb] is a bit-mask operation representing the selection of bits in a value. The bits selected range from
Isb up to msb inclusive. For example, ‘bits [3:0]’ represents the bits under the mask 0x0000000F. When
range checking is applied to a value, it is applied before the masking operation is performed.

The value written into a target field is always reduced to fit the field. It is Q-o-1 whether a linker generates a
diagnostic when a relocated value overflows its target field.

Relocation types whose names end with “_NC” are non-checking relocation types. These must not generate
diagnostics in case of field overflow. Usually, a non-checking type relocates an instruction that computes one of
the less significant parts of a single value computed by a group of instructions (84.6.8). Only the instruction
computing the most significant part of the value can be checked for field overflow because, in general, a relocated
value will overflow the fields of instructions computing the less significant parts. Some non-checking relocations
may, however, be expected to check for correct alignment of the result; the notes explain when this is permitted.

ARM IHI 0056B Copyright © 2010-2013 ARM Limited. All rights reserved. Page 14 of 27

ELF for the ARM 64-bit architecture (AArch64)

4.6.4 Static miscellaneous relocations

R_AARCH64 NONE (null relocation code) records that the section containing the place to be relocated depends on
the section defining the symbol mentioned in the relocation directive in a way otherwise invisible to a static linker.
The effect is to prevent removal of sections that might otherwise appear to be unused.

Table 4-5, Null relocation codes

Code | Name Operation | Comment

0 R_AARCH64_NONE | None

256 | withdrawn None Treat as R_AARCH64_NONE.

4.6.5 Static Data relocations
See also Table 4-13, GOT-relative data relocations.

Table 4-6, Data relocations

Code | Name Operation Overflow check
257 | R_AARCH64_ABS64 + A None
258 | R_AARCH64_ ABS32 + A 2 ex<2®
259 | R_AARCH64 ABS16 + A 2P <x<2®

260 | R_AARCH64_PREL64 + A - P | None

ninnln|lwn

261 | R_AARCH64 PREL32 + A -P|2%<x<2®

262 | R_AARCH64 PREL16 |S + A - P | 2% <x < 2'®

These overflow ranges permit either signed or unsigned narrow values to be created from the intermediate result
viewed as a 64-bit signed integer. If the place is intended to hold a narrow signed value and INTn_MAX < X <
UINTNn_MAX, no overflow will be detected but the positive result will be interpreted as a negative value.

4.6.6 Static AArch64 relocations

The following tables record single instruction relocations and relocations that allow a group or sequence of
instructions to compute a single relocated value.

Table 4-7, Group relocations to create a 16-, 32-, 48-, or 64-bit unsigned data value or address inline

Note Non-checking (_NC) forms relocate MOVK; checking forms relocate MOVZ except
R_AARCH64 MOVW_UABS_G3, which can relocate either.

Code | Name Operation | Comment
263 | R_AARCH64 MOVW_UABS GO S+ A Set a MOVZ immediate field to bits [15:0] of X; check that
0sX<2'

264 | R_AARCH64 MOVW_UABS GO NC | S + A Set a MOVK immediate field to bits [15:0] of X. No
overflow check

265 | R_AARCH64_MOVW_UABS_G1 S+ A Set a MOvZ immediate field to bits [31:16] of X; check
that 0 < X < 2%

266 | R_AARCH64_ MOVW_UABS G1 NC | S + A Set a MOVK immediate field to bits [31:16] of X. No
overflow check

267 | R_AARCH64 MOVW_UABS G2 S+ A Set a MOVZ immediate field to bits [47:32] of X; check

that 0 < X < 28

ARM IHI 0056B Copyright © 2010-2013 ARM Limited. All rights reserved. Page 15 of 27

ELF for the ARM 64-bit architecture (AArch64)

Code | Name Operation | Comment
268 | R_AARCH64 MOVW UABS G2 NC |S + A Set a MOVK immediate field to bits [47:32] of X. No
overflow check
269 | R_AARCH64_ MOVW_UABS_G3 S+ A Set a MOV[KZ] immediate field to bits [63:48] of X (no

overflow check needed)

Table 4-8, Group relocations to create a 16, 32, 48, or 64 bit signed data or offset value inline

Note These checking forms relocate MOVN or MOVZ.

Code | Name Operation | Comment
270 | R_AARCH64_MOVW_SABS GO | S + A Set a MOV[NZ] immediate field using bits [15:0] of X (see
notes below); check -2'° < X < 2'°
271 | R_AARCH64 MOVW_SABS G1 |S + A Set a MOV[NZ] immediate field using bits [31:16] of X (see
notes below); check -2%% < X < 2%
272 | R_AARCH64_MOVW_SABS G2 | S + A Set a MOV[NZ] immediate field using bits [47:32] of X (see

notes below); check -2*® < X < 2%

Note X = 0: Set the instruction to MOVZ and its immediate field to the selected bits of X.
Note X < 0: Set the instruction to MOVN and its immediate field to NOT (selected bits of X).

Table 4-9, Relocations to generate 19, 21 and 33 bit PC-relative addresses

Code | Name Operation Comment

273 | R_AARCH64 _ S + A - P | Set aload-literal immediate value to bits [20:2] of X; check that
LD _PREL_LO19 20<x<2®

274 | R_AARCH64_ S + A - P | Set an ADR immediate value to bits [20:0] of X; check that -
ADR_PREL_L021 220 < X < 2%

275 | R_AARCH64 Page(S+A) | Set an ADRP immediate value to bits [32:12] of the X; check
ADR_PREL_PG_HI121 -Page(P) | that-2¥<x<2*

276 | R_AARCH64 Page(S+A) | Set an ADRP immediate value to bits [32:12] of the X. No
ADR_PREL_PG_HI21_NC | -Page(P) | overflow check

277 | R_AARCH64 _ S+ A Set an ADD immediate value to bits [11:0] of X. No overflow
ADD_ABS L012 NC check. Used with relocations ADR_PREL_PG_HI121 and

ADR_PREL_PG_HI21_NC

278 | R_AARCH64 _ S+ A Set an LD/ST immediate value to bits [11:0] of X. No overflow

LDST8_ABS L012 NC check. Used with relocations ADR_PREL_PG_HI121 and
ADR_PREL_PG_HI121 NC

284 | R_AARCH64 S+ A Set an LD/ST immediate value to bits [11:1] of X. No overflow
LDST16_ABS_LO12_NC check

285 | R_AARCH64 S+ A Set the LD/ST immediate value to bits [11:2] of X. No overflow
LDST32_ABS_L0O12 NC check

286 | R_AARCH64_ S+ A Set the LD/ST immediate value to bits [11:3] of X. No overflow
LDST64_ABS 1012 NC check

ARM IHI 0056B Copyright © 2010-2013 ARM Limited. All rights reserved. Page 16 of 27

ELF for the ARM 64-bit architecture (AArch64)

Code

Name

Operation

Comment

299

R_AARCH64_
LDST128_ ABS_LO12_NC

S+ A

Set the LD/ST immediate value to bits [11:4] of X. No overflow
check

Note Relocations 284, 285, 286 and 299 are intended to be used with R_AARCH64_ADR_PREL_PG_HI21 (275) so
they pick out the low 12 bits of the address and, in effect, scale that by the access size. The increased
address range provided by scaled addressing is not supported by these relocations because the extra
range is unusable in conjunction with R_AARCH64_ADR_PREL_PG_HI121. Although overflow must not be
checked, a linker should check that the value of X is aligned to a multiple of the datum size.

Table 4-10, Relocations for control-flow instructions - all offsets are a multiple of 4

Code | Name Operation | Comment
279 | R_AARCH64_TSTBR14 | S+A-P Set the immediate field of a TBZ/TBNZ instruction to bits [15:2] of
X; check -2"° < X < 2%
280 | R_AARCH64_CONDBR19 | S+A-P Set the immediate field of a conditional branch instruction to bits
[20:2] of X; check -2%° < X< 2%
282 | R_AARCH64_JUMP26 S+A-P Set a B immediate field to bits [27:2] of X; check that -2*" < X < 2%
283 | R_AARCH64 CALL26 S+A-P Set a CALL immediate field to bits [27:2] of X; check that

_227 < X< 227

Table 4-11, Group relocations to create a 16,

32, 48, or 64 bit PC-relative offset inline

Note Non-checking (_NC) forms relocate MOVK; checking forms relocate MOVN or MOVZ.

Code | Name Operation | Comment
287 | R_AARCH64_MOVW_PREL_GO S+A-P Set a MOV[Nz]immediate field to bits [15:0] of X (see
notes below)
288 | R_AARCH64 MOVW_PREL_GO_NC | S+A-P Set a MOVK immediate field to bits [15:0] of X. No
overflow check
289 | R_AARCH64 MOVW_PREL_G1 S+A-P Set a MOV[NzJimmediate field to bits [31:16] of X (see
notes below)
290 | R_AARCH64_MOVW_PREL_G1_NC | S+A-P Set a MOVK immediate field to bits [31:16] of X. No
overflow check
291 | R_AARCH64 MOVW_PREL_G2 S+A-P Set a MOV[NZ]immediate value to bits [47:32] of X (see
notes below)
292 | R_AARCH64 MOVW_PREL_G2_NC | S+A-P Set a MOVK immediate field to bits [47:32] of X. No
overflow check
293 | R_AARCH64 MOVW_PREL_G3 S+A-P Set a MOV[NZ]immediate value to bits [63:48] of X (see
notes below)

Note X = 0: Set the instruction to MOVZ and its immediate value to the selected bits of X; for relocation R_.._Gn,

check that X < {G0: 2'° 61: 2%, G2: 248} (no check for R_. . ._G3).

Note X < 0: Set the instruction to MOVN and its immediate value to NOT (selected bits of X); for relocation R_.._Gn,
check that —{G0: 2'°, 61: 2%, 62: 2**} < X (no check for R_. .. G3).

ARM IHI 0056B Copyright © 2010-2013 ARM Limited. All rights reserved. Page 17 of 27

ELF for the ARM 64-bit architecture (AArch64)

Table 4-12, Group relocations to create a 16, 32, 48, or 64 bit GOT-relative offsets inline
Note Non-checking (_NC) forms relocate MOVK; checking forms relocate MOVN or MOVZ.

Code | Name Operation Comment
300 | R_AARCH64_MOVW_GOTOFF_GO G(GDAT(S+A)) | Set a MOV[NZ] immediate field to bits [15:0] of X
-GOT (see notes above)
301 | R_AARCH64 MOVW_GOTOFF_GO NC | G(GDAT(S+A)) | Set a MOVK immediate field to bits [15:0] of X.
-GOT No overflow check
302 | R_AARCH64 MOVW_GOTOFF_G1 G(GDAT(S+A)) | Set a MOV[NZ] immediate value to bits [31:16] of
-GOT X (see notes above)
303 | R_AARCH64 MOVW_GOTOFF_G1 NC | G(GDAT(S+A)) | Set a MOVK immediate value to bits [31:16] of X.
-GOT No overflow check
304 | R_AARCH64 MOVW_GOTOFF_G2 G(GDAT(S+A)) | Set a MOV[NZ] immediate value to bits [47:32] of
-GOT X (see notes above)
305 | R_AARCH64_MOVW_GOTOFF_G2_NC | G(GDAT(S+A)) | Set a MOVK immediate value to bits [47:32] of X.
-GOT No overflow check
306 | R_AARCH64_MOVW_GOTOFF_G3 G(GDAT(S+A)) | Set a MOV[NZ] immediate value to bits [63:48] of
-GOT X (see notes above)
Table 4-13, GOT-relative data relocations
Code | Name Operation | Comment
307 R_AARCH64_GOTREL64 | S+A-GOT | Set the data to a 64-bit offset relative to the GOT.
308 R_AARCH64_GOTREL32 | S+A-GOT | Set the data to a 32-bit offset relative to GOT, treated as signed,;
check that -2 < X < 2%

Table 4-14, GOT-relative instruction relocations

Code | Name Operation Comment
309 R_AARCH64_GOT_LD_ PREL19 G(GDAT(S+A))-P Set a load-literal immediate field to bits
[20:2] of X; check —2%° < X < 2%
310 R_AARCH64 LD64 GOTOFF_LO0O15 G(GDAT(S+A))-GOT Set a LD/ST immediate field to bits [14:3]
of X: check that 0 < X < 2*°, X&7 =0
311 R_AARCH64_ADR_GOT_PAGE Page (G(GDAT(S+A))) | Set the immediate value of an ADRP to bits
-Page(P) [32:12] of X; check that —2% < X < 2%
312 R_AARCH64_LD64 GOT_L012_NC G(GDAT(S+A)) Set the LD/ST immediate field to bits
[11:3] of X. No overflow check; check that
X&7=0
313 R_AARCH64_LD64 GOTPAGE_L015 | G(GDAT(S+A))- Set the LD/ST immediate field to bits
Page(GOT) [14:3] of X; check that
0<X<2® X&7=0
ARM IHI 0056B Copyright © 2010-2013 ARM Limited. All rights reserved. Page 18 of 27

ELF for the ARM 64-bit architecture (AArch64)

4.6.7 Call and Jump relocations

There is one relocation code (R_AARCH64 CALL26) for function call (BL) instructions and one
(R_AARCH64_JUMP26) for jump (B) instructions.

A linker may use a veneer (a sequence of instructions) to implement a relocated branch if the relocation is either
R_AARCH64_CALL26 or R_AARCH64_JUMP26 and:

O The target symbol has type STT_FUNC.

O Or, the target symbol and relocated place are in separate sections input to the linker.

O Or, the target symbol is undefined (external to the link unit).

In all other cases a linker shall diagnose an error if relocation cannot be effected without a veneer. A linker

generated veneer may corrupt registers IPO and IP1 [AAPCS64] and the condition flags, but must preserve all
other registers. Linker veneers may be needed for a number of reasons, including, but not limited to:

O Target is outside the addressable span of the branch instruction (+/- 128MB).

O Target address will not be known until run time, or the target address might be pre-empted.

In some systems indirect calls may also use veneers in order to support dynamic linkage that preserves pointer
comparability (all reference to the function resolve to the same address).

On platforms that do not support dynamic pre-emption of symbols an unresolved weak reference to a symbol

relocated by R_AARCH64 CALLZ26 shall be treated as a jump to the next instruction (the call becomes a no-op).
The behaviour of R_AARCH64_JUMP26 in these conditions is not specified by this standard.

4.6.8 Group relocations

A relocation code whose name ends in _Gn or _Gn_NC (n =0, 1, 2, 3) relocates an instruction in a group of
instructions that generate a single value or address (see Table 4-7, Table 4-8, Table 4-11, Table 4-12). Each such
relocation relocates one instruction in isolation, with no need to determine all members of the group at link time.

These relocations operate by performing the relocation calculation then extracting a field from the result X.
Generating the field for a Gn relocation directive starts by examining the residual value Yn after the bits of abs(X)
corresponding to less significant fields have been masked off from X. If M is the mask specified in the table
recording the relocation directive, Yn = abs(X) & ~((M & -M) — 1).

Overflow checking is performed on Yn unless the name of the relocation ends in “_NC”.

Finally the bit-field of X specified in the table (those bits of X picked out by 1-bits in M) is encoded into the
instruction’s literal field as specified in the table. In some cases other instruction bits may need to be changed
according to the sign of X.

For “MOVW" type relocations it is the assembler’s responsibility to encode the hw bits (bits 21 and 22) to indicate
the bits in the target value that the immediate field represents.

4.6.9 Proxy-generating relocations

A number of relocations generate proxy locations that are then subject to dynamic relocation. The proxies are
normally gathered together in a single table, called the Global Offset Table or GOT. Table 4-12, Group
relocations to create a 16, 32, 48, or 64 bit GOT-relative offsets inline and

Table 4-14, GOT-relative instruction relocations list the relocations that generate proxy entries.

All of the GOT entries generated by these relocations are subject to dynamic relocations (84.6.11, Dynamic
relocations).

4.6.10 Relocations for thread-local storage

The static relocations needed to support thread-local storage in a SysV-type environment are listed in tables in the
following subsections

ARM IHI 0056B Copyright © 2010-2013 ARM Limited. All rights reserved. Page 19 of 27

ELF for the ARM 64-bit architecture (AArch64)

In addition to the terms defined in §4.6.3, Relocation types, the tables listing the static relocations relating to
thread-local storage use the following terms in the column named Operation.

O

O

4.6.

GLDM(S) represents a consecutive pair of 64-bit entries in the GOT for the load module index of the symbol
S. The first 64-bit entry will be relocated with R_AARCH64_TLS DTPMOD64(S); the second 64-bit entry will
contain the constant 0.

GTLSIDX(S,A) represents a consecutive pair of 64-bit entries in the GOT. The entry contains a tls_index
structure describing the thread-local variable located at offset A from thread-local symbol S. The first 64-bit
entry will be relocated with R_AARCH64_TLS DTPMOD64(S), the second 64-bit entry will be relocated with
R_AARCH64_TLS DTPREL64(S+A).

GTPREL(S+A) represents a 64-bit entry in the GOT for the offset from the current thread pointer (TP) of the
thread-local variable located at offset A from the symbol S. The entry will be relocated with
R_AARCH64_TLS_TPREL64(S+A).

GTLSDESC(S+A) represents a consecutive pair of 64-bit entries in the GOT which contain a tlsdesc
structure describing the thread-local variable located at offset A from thread-local symbol S. The first entry
holds a pointer to the variable's TLS descriptor resolver function and the second entry holds a platform-
specific offset or pointer. The pair of 64-bit entries will be relocated with R_AARCH64_TLSDESC(S+A).

LDM(S) resolves to the load module index of the symbol S.

DTPREL(S+A) resolves to the offset from its module's TLS block of the thread local variable located at offset
A from thread-local symbol S.

TPREL (S+A) resolves to the offset from the current thread pointer (TP) of the thread local variable located at
offset A from thread-local symbol S.

TLSDESC(S+A) resolves to a contiguous pair of 64-bit values, as created by GTLSDESC(S+A).

10.1 General Dynamic thread-local storage model

Table 4-15, General Dynamic TLS relocations
Note Non-checking (_NC) MOVW forms relocate MOVK; checking forms relocate MOVN or MOVZ.

Code | Name Operation Comment

512 R_AARCH64_TLSGD_ | G(GTLSIDX(S,A)) - P Set an ADR immediate field to bits [20:0] of X;
ADR_PREL21 check —2%° < X < 2%°

513 R_AARCH64_TLSGD_ | Page(G(GTLSIDX(S,A))) | Set an ADRP immediate field to bits [32:12] of X;
ADR_PAGE21 - Page(P) check —2%? < X < 2%

514 R_AARCH64_TLSGD_ | G(GTLSIDX(S,A)) Set an ADD immediate field to bits [11:0] of X.
ADD_L012_NC No overflow check

515 | R_AARCH64_TLSGD_ | G(GTLSIDX(S,A)) - GOT | Set a MOV[NZ] immediate field to bits [31:16] of
MOVW_G1 X (see notes below)

516 R_AARCH64_TLSGD_ | G(GTLSIDX(S,A)) - GOT | Set a MOVK immediate field to bits [15:0] of X.
MOVW_GO_NC No overflow check

Note X = 0: Set the instruction to MOVZ and its immediate value to the selected bits of X; check that X < 2%,
Note X < 0: Set the instruction to MOVN and its immediate value to NOT (selected bits of X); check that —2** < X.

ARM IHI 0056B Copyright © 2010-2013 ARM Limited. All rights reserved. Page 20 of 27

ELF for the ARM 64-bit architecture (AArch64)

4.6.10.2 Local Dynamic thread-local storage model

Table 4-16, Local Dynamic TLS relocations
Note Non-checking (_NC) MOVW forms relocate MOVK; checking forms relocate MOVN or MOVZ.

Code | Name Operation Comment

517 R_AARCH64 TLSLD G(GLDM(S))) - P Set an ADR immediate field to bits [20:0] of X;
ADR_PREL21 check —2%° < X < 2%°

518 R_AARCH64 TLSLD Page(G(GLDM(S))) Set an ADRP immediate field to bits [32:12] of
ADR_PAGE21 -Page(P) X; check —2%% < X < 2%

519 R_AARCH64_TLSLD_ G(GLDM(S)) Set an ADD immediate field to bits [11:0] of X.
ADD_LO12_NC No overflow check

520 R_AARCH64 TLSLD G(GLDM(S)) - GOT | Seta MOV[NZ] immediate field to bits [31:16]
MOVW_G1 of X (see notes above)

521 R_AARCH64_ TLSLD__ G(GLDM(S)) - GOT Set a MOVK immediate field to bits [15:0] of X.
MOVW_GO_NC No overflow check

522 R_AARCH64_TLSLD_ G(GLDM(S)) - P Set a load-literal immediate field to bits [20:2]
LD_PREL19 of X; check —2%° < X < 2%

523 R_AARCH64 TLSLD DTPREL(S+A) Set a MOV[NZ] immediate field to bits [47:32]
MOVW_DTPREL_G2 of X (see notes below)

524 | R_AARCH64_TLSLD_ DTPREL (S+A) Set a MOV[NZ] immediate field to bits [31:16]
MOVW_DTPREL_G1 of X (see notes below)

525 R_AARCH64 TLSLD DTPREL(S+A) Set a MOVK immediate field to bits [31:16] of
MOVW_DTPREL_G1 NC X. No overflow check

526 R_AARCH64 TLSLD DTPREL(S+A) Set a MOV[NZ] immediate field to bits [15:0]
MOVW_DTPREL_GO of X (see notes below)

527 R_AARCH64_TLSLD_ DTPREL(S+A) Set a MOVK immediate field to bits [15:0] of X.
MOVW_DTPREL_GO_NC No overflow check

528 R_AARCH64 TLSLD DTPREL(S+A) Set an ADD immediate field to bits [23:12] of
ADD_DTPREL_HI112 X; check 0 < X < 2%

529 R_AARCH64 TLSLD DTPREL(S+A) Set an ADD immediate field to bits [11:0] of X;
ADD_DTPREL_LO12 check 0 < X < 2%

530 R_AARCH64_TLSLD_ DTPREL(S+A) Set an ADD immediate field to bits [11:0] of X.
ADD_DTPREL_LO12 NC No overflow check

531 R_AARCH64 TLSLD DTPREL(S+A) Set a LD/ST offset field to bits [11:0] of X;
LDST8 DTPREL_LO12 check 0 < X < 2%

532 R_AARCH64_ TLSLD__ DTPREL(S+A) Set a LD/ST offset field to bits [11:0] of X. No
LDST8 DTPREL_LO12 NC overflow check

533 R_AARCH64_TLSLD_ DTPREL(S+A) Set a LD/ST offset field to bits [11:1] of X;
LDST16_DTPREL_LO12 check 0 < X < 2%

534 R_AARCH64_ TLSLD__ DTPREL(S+A) Set a LD/ST offset field to bits [11:1] of X. No
LDST16_DTPREL_LO12_NC overflow check

ARM IHI 0056B Copyright © 2010-2013 ARM Limited. All rights reserved. Page 21 of 27

ELF for the ARM 64-bit architecture (AArch64)

Code | Name Operation Comment
535 R_AARCH64_TLSLD_ DTPREL(S+A) Set a LD/ST offset field to bits [11:2] of X;
LDST32_DTPREL_LO12 check 0 < X < 2%
536 R_AARCH64_TLSLD_ DTPREL(S+A) Set a LD/ST offset field to bits [11:2] of X. No
LDST32_DTPREL_L0O12_NC overflow check
537 R_AARCH64 TLSLD DTPREL(S+A) Set a LD/ST offset field to bits [11:3] of X;
LDST64_DTPREL_LO12 check 0 < X < 2%
538 R_AARCH64_TLSLD_ DTPREL(S+A) Set a LD/ST offset field to bits [11:3] of X. No
LDST64 DTPREL_L012_ NC overflow check
572 R_AARCH64_TLSLD_ DTPREL(S+A) Set a LD/ST offset field to bits [11:4] of X;
LDST128 DTPREL_L012 check 0 < X < 2%
573 R_AARCH64_TLSLD_ DTPREL(S+A) Set a LD/ST offset field to bits [11:4] of X.
LDST128 DTPREL_LO12_NC No overflow check
Note X = 0: Set the instruction to MOVZ and its immediate value to the selected bits S; for relocation R_..._Gn,
check that X < {GO: 2'° 61: 2%, G2: 248} (no check for R_. . ._G3).
Note X < 0: Set the instruction to MOVN and its immediate value to NOT (selected bits of); for relocation R_.._Gn,
check that —{G0: 2'°, G1: 2%, G2: 2**} < X (no check for R_. .. G3).
Note For scaled-addressing relocations 533-538, 572 and 573, a linker should check that X is a multiple of the
datum size.

4.6.10.3 Initial Exec thread-local storage model

Table 4-17, Initial Exec TLS relocations
Note Non-checking (_NC) MOVW forms relocate MOVK; checking forms relocate MOVN or MOVZ.

Code | Name Operation Comment

539 R_AARCH64 TLSIE_ G(GTPREL(S+A)) — GOT | Set a MOV[Nz] immediate field to bits [31:16]
MOVW_GOTTPREL_G1 of X (see notes above)

540 R_AARCH64_TLSIE_ G(GTPREL(S+A)) — GOT | Set MOVK immediate to bits [15:0] of X. No
MOVW_GOTTPREL_GO_NC overflow check

541 R_AARCH64_ TLSIE_ Page(G(GTPREL(S+A))) | Set an ADRP immediate field to bits [32:12] of
ADR_GOTTPREL_PAGE21 — Page(P) X; check —2*% < X < 2%

542 R_AARCH64 TLSIE_ G(GTPREL(S+A)) Set an LD offset field to bits [11:3] of X. No
LD64_GOTTPREL_LO12_NC overflow check; check that X&7=0

543 R_AARCH64_TLSIE_ G(GTPREL(S+A)) — P Set a load-literal immediate to bits [20:2] of
LD_GOTTPREL_PREL19 X; check —2%° < X < 2%°

4.6.10.4 Local Exec thread-local storage model

Table 4-18, Local Exec TLS relocations
Note Non-checking (_NC) MOVW forms relocate MOVK; checking forms relocate MOVN or MOVZ.

Code | Name Operation Comment
544 R_AARCH64 TLSLE TPREL(S+A) Set a MOV[NZ] immediate field to bits [47:32] of
MOVW_TPREL_G2 X (see notes above)

ARM IHI 0056B Copyright © 2010-2013 ARM Limited. All rights reserved. Page 22 of 27

ELF for the ARM 64-bit architecture (AArch64)

Code | Name Operation Comment

545 R_AARCH64_TLSLE_ TPREL(S+A) Set a MOV[NZ] immediate field to bits [31:16] of
MOVW_TPREL_G1 X (see notes above)

546 R_AARCH64_ TLSLE_ TPREL(S+A) Set a MOVK immediate field to bits [31:16] of X.
MOVW_TPREL_G1_NC No overflow check

547 R_AARCH64 TLSLE TPREL(S+A) Set a MOV[NZ] immediate field to bits [15:0] of X
MOVW_TPREL_GO (see notes above)

548 R_AARCH64_TLSLE_ TPREL(S+A) Set a MOVK immediate field to bits [15:0] of X.
MOVW_TPREL_GO_NC No overflow check

549 R_AARCH64_ TLSLE_ TPREL(S+A) Set an ADD immediate field to bits [23:12] of X;
ADD_TPREL_HI112 check 0 < X < 2%,

550 R_AARCH64 TLSLE TPREL(S+A) Set an ADD immediate field to bits [11:0] of X;
ADD_TPREL_L0O12 check 0 < X <22,

551 R_AARCH64_TLSLE_ TPREL(S+A) Set an ADD immediate field to bits [11:0] of X.
ADD_TPREL_LO12 NC No overflow check

552 R_AARCH64_ TLSLE_ TPREL(S+A) Set a LD/ST offset field to bits [11:0] of X; check
LDST8 TPREL_LO012 0sX<2%

553 R_AARCH64 TLSLE_ TPREL(S+A) Set a LD/ST offset field to bits [11:0] of X. No
LDST8_TPREL_L0O12_NC overflow check

554 R_AARCH64_TLSLE_ TPREL(S+A) Set a LD/ST offset field to bits [11:1] of X; check
LDST16_TPREL_LO12 0<X<2%

555 R_AARCH64_TLSLE_ TPREL(S+A) Set a LD/ST offset field to bits [11:1] of X. No
LDST16_TPREL_L0O12 NC overflow check

556 R_AARCH64_TLSLE_ TPREL(S+A) Set a LD/ST offset field to bits [11:2] of X; check
LDST32_TPREL_LO12 0<X<2%

557 R_AARCH64_TLSLE_ TPREL(S+A) Set a LD/ST offset field to bits [11:2] of X. No
LDST32_TPREL_L0O12 _NC overflow check

558 R_AARCH64_ TLSLE_ TPREL(S+A) Set a LD/ST offset field to bits [11:3] of X; check
LDST64_TPREL_L012 0<X <2t

559 R_AARCH64_ TLSLE_ TPREL(S+A) Set a LD/ST offset field to bits [11:3] of X. No
LDST64_TPREL_L012_NC overflow check

570 R_AARCH64 TLSLE_ TPREL(S+A) Set a LD/ST offset field to bits [11:4] of X; check
LDST128 TPREL_LO012 0<X <2t

571 R_AARCH64 TLSLE_ TPREL(S+A) Set a LD/ST offset field to bits [11:4] of X. No

LDST128_TPREL_LO12_NC

overflow check

Note For scaled-addressing relocations 554-559, 570 and 571 a linker should check that X is a multiple of the

datum size.

ARM [HI 0056B

Copyright © 2010-2013 ARM Limited. All rights reserved.

Page 23 of 27

ELF for the ARM 64-bit architecture (AArch64)

4.6.10.5 Thread-local storage descriptors

Table 4-19, TLS descriptor relocations

Code | Name Operation Comment
560 R_AARCH64_TLSDESC_ | G(GTLSDESC(S+A)) — P Set a load-literal immediate to bits [20:2];
LD_PREL19 check -2” < X < 2%%; check X & 3 = 0.
561 R_AARCH64_TLSDESC_ | G(GTLSDESC(S+A) — P Set an ADR immediate field to bits [20:0];
ADR_PREL21 check -2 < X < 2%
562 | R_AARCH64_TLSDESC_ | Page(G(GTLSDESC(S+A))) | Set an ADRP immediate field to bits [32:12] of
ADR_PAGE21 — Page(P) X; check -2% < X < 2%,
563 R_AARCH64_TLSDESC_ | G(GTLSDESC(S+A)) Set an LD offset field to bits [11:3] of X. No
LD64_L012 overflow check; check X & 7 = 0.
564 R_AARCH64_TLSDESC_ | G(GTLSDESC(S+A)) Set an ADD immediate field to bits [11:0] of X.
ADD LO12 No overflow check.
565 R_AARCH64_TLSDESC_ | G(GTLSDESC(S+A)) — GOT | Set a MOV[NZ] immediate field to bits [31:16]
OFF_G1 of X; check -2°% < X < 2%, See notes below.
566 R_AARCH64_TLSDESC_ | G(GTLSDESC(S+A)) — GOT | Set a MOVK immediate field to bits [15:0] of X.
OFF_GO_NC No overflow check.
567 R_AARCH64_TLSDESC_ | None For relaxation only. Must be used to identify
LDR an LDR instruction which loads the TLS
descriptor function pointer for S + A if it has no
other relocation.
568 R_AARCH64_TLSDESC_ | None For relaxation only. Must be used to identify
ADD an ADD instruction which computes the
address of the TLS Descriptor for S + A if it
has no other relocation.
569 R_AARCH64 TLSDESC | None For relaxation only. Must be used to identify a
CALL BLR instruction which performs an indirect call
to the TLS descriptor function for S + A.

Note X = 0: Set the instruction to MOVZ and its immediate value to the selected bits of X.
Note X < 0: Set the instruction to MOVN and its immediate value to NOT (selected bits of X).

Relocation codes R_AARCH64_TLSDESC_LDR, R_AARCH64_TLSDESC_ADD and R_AARCH64_TLSDESC_CALL
are needed to permit linker optimization of TLS descriptor code sequences to use Initial-exec or Local-exec TLS
sequences; this can only be done if all relevant uses of TLS descriptors are marked to permit accurate relaxation.
Object producers that are unable to satisfy this requirement must generate traditional General-dynamic TLS
sequences using the relocations described in 84.6.10.1, General Dynamic thread-local storage model. The details
of TLS descriptors are beyond the scope of this specification; a general introduction can be found in [TLSDESC].

4.6.11 Dynamic relocations

The dynamic relocations for those execution environments that support only a limited number of run-time
relocation types are listed in Table 4-20, Dynamic relocations. The enumeration of dynamic relocations
commences at 1024 and the range is compact.

ARM [HI 0056B

Copyright © 2010-2013 ARM Limited. All rights reserved.

Page 24 of 27

ELF for the ARM 64-bit architecture (AArch64)

Table 4-20, Dynamic relocations

Code | Name Operation Comment

1024 | R_AARCH64_COPY See note below.
1025 | R_AARCH64_GLOB_DAT S+ A See note below
1026 | R_AARCH64_JUMP_SLOT S+ A See note below
1027 | R_AARCH64_RELATIVE Delta(S) + A See note below

1028 | R_AARCH64_TLS_DTPREL64 | DTPREL(S+A)

1029 | R_AARCH64_TLS_DTPMOD64 | LDM(S)

1030 | R_AARCH64_TLS_TPREL64 | TPREL(S+A)

1031 | R_AARCH64 TLSDESC TLSDESC(S+A) Identifies a TLS descriptor to be filled
1032 | R_AARCH64 IRELATIVE Indirect(Delta(S) | See note below.
+ A)

With the exception of R_AARCH64_COPY all dynamic relocations require that the place being relocated is an 8-
byte aligned 64-bit data location.

R_AARCH64 COPY may only appear in executable ELF files where e_type is setto ET_EXEC. The effectis to
cause the dynamic linker to locate the target symbol in a shared library object and then to copy the number of
bytes specified by its st_size field to the place. The address of the place is then used to pre-empt all other
references to the specified symbol. It is an error if the storage space allocated in the executable is insufficient to
hold the full copy of the symbol. If the object being copied contains dynamic relocations then the effect must be
as if those relocations were performed before the copy was made.

R_AARCH64 _COPY is normally only used in SysV type environments where the executable is not position-
independent and references by the code and read-only data sections cannot be relocated dynamically to refer to
an object that is defined in a shared library.

The need for copy relocations can be avoided if a compiler generates all code references to such objects indirectly
through a dynamically relocatable location and if all static data references are placed in relocatable regions of the
image. In practice, this is difficult to achieve without source-code annotation. A better approach is to avoid
defining static global data in shared libraries.

R_AARCH64_ GLOB_DAT relocates a GOT entry used to hold the address of a (data) symbol which must be
resolved at load time.

R_AARCH64 JUMP_SLOT is used to mark code targets that will be executed.

O On platforms that support dynamic binding the relocations may be performed lazily on demand.

O The initial value stored in the place is the offset to the entry sequence stub for the dynamic linker. It must be
adjusted during initial loading by the offset of the load address of the segment from its link address.

O Addresses stored in the place of these relocations may not be used for pointer comparison until the relocation
after has been resolved.

O Because the initial value of the place is not related to the ultimate target of a R_AARCH64 JUMP_SLOT
relocation the addend A of such a REL-type relocation shall be zero rather than the initial content of the place.
A platform ABI shall prescribe whether or not the r_addend field of such a RELA-type relocation is honored.
(There may be security-related reasons not to do so).

R_AARCH64_ RELATIVE represents a relative adjustment to the place based on the load address of the object
relative to its original link address. All symbols defined in the same segment will have the same relative

adjustment. If S is the null symbol (ELF symbol index 0) then the adjustment is based on the segment defining
the place. On systems where all segments are mapped contiguously the adjustment will be the same for each

ARM IHI 0056B Copyright © 2010-2013 ARM Limited. All rights reserved. Page 25 of 27

ELF for the ARM 64-bit architecture (AArch64)

reloction, thus adjustment never needs to resolve the symbol. This relocation represents an optimization; it can
be used to replace R_AARCH64_GLOB_DAT when the symbol resolves to the current dynamic shared object.

R_AARCH64 IRELATIVE represents a dynamic selection of the place’s resolved value. The means by which this
relocation is generated is platform specific, as are the conditions that must hold when resolving takes place.

4.6.12 Private and platform-specific relocations
Relocation codes 0XxEOQO through OXEFFF denote private relocations for vendor experiments.

Relocation codes 0xF000 through OXFFFF denote relocations defined by the platform ABI. They can only be
interpreted when the E1_OSABI field is set to indicate the Platform ABI governing the definition.

These codes will not be assigned by any future version of this standard.

4.6.13 Unallocated relocations
All unallocated relocation types are reserved for use by future revisions of this specification.

4.6.14 ldempotency

All RELA type relocations are idempotent. They may be reapplied to the place and the result will be the same.
This allows a static linker to preserve full relocation information for an image by converting all REL type relocations
into RELA type relocations.

Note A REL type relocation can only be idempotent if the original addend was zero and if subsequent re-linking
assumes that REL relocations have zero for all addends.

ARM IHI 0056B Copyright © 2010-2013 ARM Limited. All rights reserved. Page 26 of 27

ELF for the ARM 64-bit architecture (AArch64)

5 PROGRAM LOADING AND DYNAMIC LINKING

This section provides details of AArch64-specific definitions and changes relating to executable images.

5.1 Program Header

The Program Header provides a number of fields that assist in interpretation of the file. Most of these are
specified in the base standard [SCO-ELF]. The following fields have AArch64-specific meanings.

p_type
Table 5-1, Processor-specific segment types lists the processor-specific segment types.

Table 5-1, Processor-specific segment types

Name p_type Meaning

PT_AARCH64_ARCHEXT | 0x70000000 | Reserved for architecture compatibility information

PT_AARCHB4_UNWIND | 0x70000001 | Reserved for exception unwinding tables

A segment of type PT_AARCH64_ARCHEXT (if present) contains information describing the architecture
capabilities required by the executable file. Not all platform ABIs require this segment; the Linux ABI does not. If
the segment is present it must appear before segment of type PT_LOAD.

PT_AARCH64_UNWIND (if present) describes the location of a program’s exception unwind tables.

p_flags
There are no AArch64-specific flags.

5.1.1 Platform architecture compatibility data
At this time this ABI specifies no generic platform architecture compatibility data.

5.2 Program Loading

There are no AArch64-specific definitions relating to program loading.

5.3 Dynamic Linking

5.3.1 Dynamic Section
There are no AArch64-specific dynamic array tags.

ARM IHI 0056B Copyright © 2010-2013 ARM Limited. All rights reserved. Page 27 of 27

	1 ABOUT THIS DOCUMENT
	1.1 Change control
	1.1.1 Current status and anticipated changes
	1.1.2 Change history

	1.2 References
	1.3 Terms and abbreviations
	1.4 Your licence to use this specification
	1.5 Acknowledgements

	2 ABOUT THIS SPECIFICATION
	3 PLATFORM STANDARDS (EXAMPLE ONLY)
	3.1 Linux Platform ABI (example only)
	3.1.1 Symbol Versioning
	3.1.2 Program Linkage Table (PLT) Sequences and Usage Models
	3.1.2.1 Symbols for which a PLT entry must be generated
	3.1.2.2 Overview of PLT entry code generation

	4 OBJECT FILES
	4.1 Introduction
	4.1.1 Registered Vendor Names

	ELF Header
	4.2.1 ELF Identification

	4.3 Sections
	4.3.1 Special Section Indexes
	4.3.2 Section Types
	4.3.3 Section Attribute Flags
	4.3.3.1 Merging of objects in sections with SHF_MERGE

	4.3.4 Special Sections
	4.3.5 Section Alignment
	4.3.6 Build Attributes

	4.4 String Table
	4.5 Symbol Table
	4.5.1 Weak Symbols
	4.5.1.1 Weak References
	4.5.1.2 Weak Definitions

	4.5.2 Symbol Types
	4.5.3 Symbol names
	4.5.3.1 Reserved symbol names

	4.5.4 Mapping symbols

	4.6 Relocation
	4.6.1 Relocation codes
	4.6.2 Addends and PC-bias
	4.6.3 Relocation types
	4.6.4 Static miscellaneous relocations
	4.6.5 Static Data relocations
	4.6.6 Static AArch64 relocations
	4.6.7 Call and Jump relocations
	4.6.8 Group relocations
	4.6.9 Proxy-generating relocations
	4.6.10 Relocations for thread-local storage
	4.6.10.1 General Dynamic thread-local storage model
	4.6.10.2 Local Dynamic thread-local storage model
	4.6.10.3 Initial Exec thread-local storage model
	4.6.10.4 Local Exec thread-local storage model
	4.6.10.5 Thread-local storage descriptors

	4.6.11 Dynamic relocations
	4.6.12 Private and platform-specific relocations
	4.6.13 Unallocated relocations
	4.6.14 Idempotency

	5 PROGRAM LOADING AND DYNAMIC LINKING
	5.1 Program Header
	5.1.1 Platform architecture compatibility data

	5.2 Program Loading
	5.3 Dynamic Linking
	5.3.1 Dynamic Section

